No Financial Disclosures

• I have no financial relationship with any manufacturer of any commercial product and/or provider of commercial services discussed in the conference.

• I do not intend to discuss an unapproved/investigative use of a commercial product or device in my presentation.
Arrhythmia Evaluation

• Rate
 – Fast or slow?

• Rhythm
 – Regular or irregular?
 – Atrial rhythm or ventricular rhythm?
Normal Conduction

- Sinoatrial (SA) node
- Atrioventricular (AV) node

RA = Right atrium
RV = Right ventricle
LA = Left atrium
LV = Left ventricle
Fetal Arrhythmia Background

- Complicates ~2% of all pregnancies
- Account for 10-20% of referrals to pediatric cardiologist
- Abnormal impulse generation or propagation
- Various techniques
 - Fetal ECG
 - Magnetocardiography (fMCG)

2:1 AV Block
Fetal Arrhythmia Background

• Complicates ~2% of all pregnancies
• Account for 10-20% of referrals to pediatric cardiologist
• Abnormal impulse generation or propagation
• Techniques
 – Fetal ECG
 – Magnetocardiography (fMCG)
 – Echocardiography

Assess with M-mode or spectral Doppler
Color and tissue Doppler may be helpful
M-Mode Assessment

- Place cursor across ventricular and atrial wall

1:1 AV Conduction
Color M-Mode Assessment

FR 6Hz
7.0cm

2D / MM
63% 63%
C 58
P Off
HRes

CF
77%
3.0MHz
WF High
Med

Atrial

Ventricular

M3 M4
+66.7

-51.9 cm/s

100mm/s
Spectral Doppler Assessment

• E = early passive ventricular inflow from atrium

• A = active atrial systolic contraction stimulated by SA node, mechanical event correlating with atrial electrical stimulation
Spectral Doppler Assessment

MV-LVOT
Spectral Doppler Assessment

SVC-Aorta
Tissue Doppler Imaging

- Measurement of myocardial velocity and timing
<table>
<thead>
<tr>
<th>Too Fast</th>
<th>Irregular</th>
<th>Too Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus tachycardia</td>
<td>Premature atrial contractions (conducted, blocked)</td>
<td>Sinus bradycardia</td>
</tr>
<tr>
<td>Supraventricular Tachycardia – Re-entrant</td>
<td>Atrial bigeminy (conducted)</td>
<td>Atrial bigeminy (blocked)</td>
</tr>
<tr>
<td>Atrial Flutter</td>
<td>Atrial trigeminy (conducted, blocked)</td>
<td>2:1 AV Block</td>
</tr>
<tr>
<td>Junctional tachycardia</td>
<td>Premature ventricular contractions (conducted, blocked)</td>
<td>Third degree AV Block</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>2nd Degree AV block (Wenkebach)</td>
<td></td>
</tr>
</tbody>
</table>
Irregular Rhythm

<table>
<thead>
<tr>
<th></th>
<th>Premature Atrial Contraction (blocked)</th>
<th>Premature Atrial Contraction (conducted)</th>
<th>Atrial Bigeminy (conducted)</th>
<th>Atrial Trigeminy (blocked)</th>
<th>2nd Degree AV Block Wenkebach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Rate</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>A-A Interval</td>
<td>irregular</td>
<td>irregular</td>
<td>regularly irregular</td>
<td>regularly irregular</td>
<td>regular</td>
</tr>
<tr>
<td>A-V Relation</td>
<td>>1:1</td>
<td>1:1</td>
<td>2:1</td>
<td>3:2</td>
<td>>1:1</td>
</tr>
<tr>
<td>Ventricular Rate</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>V-V Interval</td>
<td>irregular</td>
<td>irregular</td>
<td>regularly irregular</td>
<td>regularly irregular</td>
<td>irregular</td>
</tr>
<tr>
<td>V-A Interval</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>--</td>
</tr>
<tr>
<td>Incidence</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>rare</td>
</tr>
<tr>
<td>Relevance</td>
<td>minor, transient</td>
<td>minor, transient</td>
<td>minor, transient</td>
<td>minor, transient</td>
<td>may progress</td>
</tr>
</tbody>
</table>

E Jaeggi, Fetal Cardiology 2nd ed.
Premature Atrial Contraction - Conducted

- Isolated benign event
- Most common rhythm disturbance
- Causes
 - Maternal caffeine/medications
 - Floppy atrial septum
- 1-3% risk of SVT

Drawings courtesy of Dr. Edgar Jaeggi
Atrial Bigeminy - Conducted
Atrial Bigeminy - Conducted

19w3d

A PAC A PAC

V V V V

100mm/s
Atrial Trigeminy - Blocked
<table>
<thead>
<tr>
<th></th>
<th>Sinus</th>
<th>Blocked Atrial Bigeminy</th>
<th>2:1 AV Block</th>
<th>Third Degree AV Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Rate</td>
<td>75-90</td>
<td>normal</td>
<td>normal</td>
<td>slow-normal</td>
</tr>
<tr>
<td>A-A Interval</td>
<td>regular</td>
<td>regularly irregular</td>
<td>regular</td>
<td>regular</td>
</tr>
<tr>
<td>A-V Relationship</td>
<td>1:1</td>
<td>2:1</td>
<td>2:1</td>
<td>dissociated</td>
</tr>
<tr>
<td>Ventricular Rate</td>
<td>75-90</td>
<td>65-90</td>
<td>60-75</td>
<td>35-80</td>
</tr>
<tr>
<td>V-V Interval</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
</tr>
<tr>
<td>V-A Interval</td>
<td>long</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Incidence</td>
<td>+</td>
<td>+</td>
<td>rare</td>
<td>++</td>
</tr>
<tr>
<td>Relevance</td>
<td>depends on cause</td>
<td>minor, transient</td>
<td>major, may progress</td>
<td>major, irreversible</td>
</tr>
</tbody>
</table>

E Jaeggi, Fetal Cardiology 2nd ed.
Definition of Bradycardia

Classic definition of bradycardia => 110 bpm

Mitchell et al. Circulation 2012
Blocked Atrial Bigeminy

- A>V, slow
- BAB has “long-short-long” pattern
- Self-limited and benign
- May progress to SVT (0.5-3% of the time)
2:1 AV Block

• AV associated then non-conducted
• Regular A-A interval

Courtesy of Dr. Moon-Grady
Blocked Atrial Bigeminy vs 2:1 AV Block

- Assess for signs of immune mediated heart block
 - Take a thorough history
 - Effusions, AV valve regurgitation, endocardial fibroelastosis (more common with 2:1 AV block)
 - Draw SSA & SSB antibodies

- BAB is slower than sinus bradycardia but faster ventricular rate than 2:1 AV block
- BAB more irregular than 2:1 AV block
- BAB has multiple rhythms (sinus, isolated PAC, SVT...)
- Repeat evaluation with close follow up

Wiggins et al. Heart Rhythm 2013
Long QT Syndrome

- Prolonged repolarization creates prolonged QT interval
 - Abnormal potassium and sodium channels

- Family history
 - Autosomal dominant (50% recurrence risk)
 - Cardiac arrest or sudden death spontaneously or during loud noises, swimming, or while sleeping
 - Near drowning, seizures, syncope
Long QT Syndrome

- Prevalence: 1 in 2000 people
- Multiple genetic mutations identified in subtypes (cord blood testing available)
 - KCNQ1, KCNH2, SCN5A...
- Fetal rhythm: sinus bradycardia, 2:1 AV block, ventricular tachycardia
Complete Heart Block Background

• Prevalence – 1 in 20,000 pregnancies

• Etiology
 – Immune mediated
 • SSA and SSB antibodies
 • Maternal SLE, Sjogren’s, Rheumatoid Arthritis
 – Structural heart disease
 • Heterotaxy syndrome (left atrial isomerism)
 • Congenitally corrected TGA
 – Long QT “blocked” rhythm
Immune Mediated Heart Block

• Transplacental transfer of SSA and SSB antibodies
 – Mainly in second trimester

• Anti-SSA/SSB
 – 2% incidence of AV block
 – 16% incidence of AVB with affected prior sibling

• Bind to AV/SA node, Purkinje fibers, or myocardium
 – myocyte inflammation, apoptosis, and scar formation

• May cause cardiomyopathy
Immune Mediated - Third Degree AV Block

- $A>V$, slow, regular
- Patchy endocardial fibroelastosis
Third Degree AV Block

Elevated S/D ratio
Case of Fetal Bradycardia

- Presented @ 21 wks to outside hospital
- “go home and let nature take its course”
- 2nd opinion in Phoenix
- FHx Lupus (sister), pt asymptomatic
- SSA 164 IU/mL; SSB neg
Immune Mediated - CHB

- Rx dexamethasone, terbutaline
- IVIG 70g x4 doses during pregnancy
- Delivered @ 33 wks; BW 3lbs3oz
- IVIG after delivery
- Temporary pacemaker > permanent
- Surgical ASD closure @ 4 1/2 years
 and doing great!

Hornberger et al. JACC 2011.
CHB – Prenatal Treatment

- Dexamethasone – ongoing inflammation
 - 8 mg/day
 - After two weeks, 4 mg/day
 - After 28 weeks, 2 mg/day and continue to birth
- β-sympathomimetics – HR <50 bpm
- IVIG – decrease inflammation
- Plasmapheresis – decrease antibody load
- Delivery at 24-30 weeks with early initiation of isuprel and external pacing
- Hydroxychloroquine reduces AV block/EFE by 64%

Immune Mediated Process – Key Points

- May be associated with sinus node dysfunction
- SSA titers may be helpful (15% incidence; ≥ 50 U/mL and 85% incidence; ≥ 85 U/mL Jaeggi 2011)
- Complete heart block is irreversible
 - Steroids used to prevent associated cardiomyopathy
- Weekly mechanical AV interval monitoring NOT effective (PRIDE study Friedman 2008)
- Prospective study of ability of home monitoring to predict AV block (Cuneo et al)
<table>
<thead>
<tr>
<th>Case</th>
<th>Year</th>
<th>GA at CHD</th>
<th>GA at CA VB</th>
<th>CHD</th>
<th>Hydrops</th>
<th>A rate (bpm)</th>
<th>V rate (bpm)</th>
<th>Fetal therapy</th>
<th>GA at birth or death</th>
<th>Postnatal treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1990</td>
<td>18</td>
<td>18</td>
<td>LI</td>
<td>+</td>
<td>120</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1991</td>
<td>28</td>
<td>28</td>
<td>TAPVC</td>
<td>—</td>
<td>130</td>
<td>64</td>
<td>—</td>
<td>38</td>
<td>Surgery, epinephrine, dopa</td>
<td>NND</td>
</tr>
<tr>
<td>3</td>
<td>1991</td>
<td>20</td>
<td>20</td>
<td>AVSD</td>
<td>—</td>
<td>110</td>
<td>55</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>1992</td>
<td>18</td>
<td>18</td>
<td>LI</td>
<td>+</td>
<td>120</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1992</td>
<td>21</td>
<td>21</td>
<td>LI</td>
<td>+</td>
<td>130</td>
<td>56</td>
<td>—</td>
<td>33</td>
<td>ISO, TPM</td>
<td>NND</td>
</tr>
<tr>
<td>6</td>
<td>1992</td>
<td>15</td>
<td>15</td>
<td>AVSD</td>
<td>+</td>
<td>130</td>
<td>50</td>
<td>—</td>
<td>15*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>7</td>
<td>1992</td>
<td>21</td>
<td>27</td>
<td>LI</td>
<td>—</td>
<td>120</td>
<td>65</td>
<td>—</td>
<td>36</td>
<td>PM, coartectomy</td>
<td>Alive</td>
</tr>
<tr>
<td>8</td>
<td>1993</td>
<td>30</td>
<td>30</td>
<td>cc-TGA</td>
<td>—</td>
<td>126</td>
<td>65</td>
<td>—</td>
<td>33</td>
<td>PGE, TPM, coarctectomy</td>
<td>Alive</td>
</tr>
<tr>
<td>9</td>
<td>1994</td>
<td>22</td>
<td>22</td>
<td>LI</td>
<td>—</td>
<td>112</td>
<td>63</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1994</td>
<td>14</td>
<td>14</td>
<td>LI</td>
<td>—</td>
<td>105</td>
<td>52</td>
<td>—</td>
<td>20*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>11</td>
<td>1995</td>
<td>20</td>
<td>20</td>
<td>LI</td>
<td>+</td>
<td>100</td>
<td>43</td>
<td>—</td>
<td>20*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>12</td>
<td>1995</td>
<td>20</td>
<td>20</td>
<td>LI</td>
<td>—</td>
<td>115</td>
<td>52</td>
<td>—</td>
<td>20*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>13</td>
<td>1995</td>
<td>34</td>
<td>34</td>
<td>LI</td>
<td>—</td>
<td>102</td>
<td>53</td>
<td>β-sym</td>
<td>37</td>
<td>Dopa, minimal care</td>
<td>NND</td>
</tr>
<tr>
<td>14</td>
<td>1996</td>
<td>20</td>
<td>20</td>
<td>LI</td>
<td>+</td>
<td>130</td>
<td>52</td>
<td>—</td>
<td>20*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>15</td>
<td>1997</td>
<td>18</td>
<td>18</td>
<td>LI</td>
<td>—</td>
<td>134</td>
<td>57</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>1998</td>
<td>18</td>
<td>18</td>
<td>LI</td>
<td>—</td>
<td>100</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>1999</td>
<td>19</td>
<td>19</td>
<td>LI</td>
<td>—</td>
<td>105</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>1999</td>
<td>26</td>
<td>26</td>
<td>LI</td>
<td>+</td>
<td>108</td>
<td>57</td>
<td>β-sym</td>
<td>34</td>
<td>PGE, epinephrine, dopa, TPM</td>
<td>NND</td>
</tr>
<tr>
<td>19</td>
<td>2000</td>
<td>22</td>
<td>28</td>
<td>cc-TGA</td>
<td>—</td>
<td>135</td>
<td>65</td>
<td>—</td>
<td>34</td>
<td>ISO, PGE, dopa, NO, PM</td>
<td>Alive</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
<td>19</td>
<td>19</td>
<td>LI</td>
<td>—</td>
<td>115</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>TOP</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>2001</td>
<td>17</td>
<td>17</td>
<td>LI</td>
<td>—</td>
<td>120</td>
<td>45</td>
<td>—</td>
<td>18*</td>
<td>—</td>
<td>FD</td>
</tr>
<tr>
<td>22</td>
<td>2002</td>
<td>37</td>
<td>37</td>
<td>cc-TGA</td>
<td>—</td>
<td>135</td>
<td>62</td>
<td>—</td>
<td>38</td>
<td>ISO, PM</td>
<td>Died at 2 months</td>
</tr>
<tr>
<td>23</td>
<td>2002</td>
<td>14</td>
<td>16</td>
<td>LI</td>
<td>+</td>
<td>115</td>
<td>60</td>
<td>β-sym</td>
<td>32</td>
<td>ISO, paracentesis, epinephrine</td>
<td>NND</td>
</tr>
<tr>
<td>24</td>
<td>2003</td>
<td>15</td>
<td>15</td>
<td>LI</td>
<td>+</td>
<td>120</td>
<td>59</td>
<td>—</td>
<td>16*</td>
<td>—</td>
<td>FD</td>
</tr>
</tbody>
</table>
CAVB & CCTGA

- A-V and V-A discordance
- Rare: 0.5% of CHD
- Associated with VSD, LVOTO, Ebstein’s TV
- 40% CHB in 20 years
 - Anterior-superior displacement of the AV node

CHB & CCTGA

Normal 3 VV
CHB & Left Atrial Isomerism

- Absence/dysfunction of SA Node
 - When CHB present, only 1/18 survived at 1 year
CHB & Left Atrial Isomerism

- Azygous Vein
- Aorta
- Coronary sinus
LAI – Interrupted IVC/Azygous Vein

LSVC

Azygous Vein

Aorta
Tachyarrhythmias

<table>
<thead>
<tr>
<th></th>
<th>Sinus</th>
<th>SVT (re-entry)</th>
<th>Atrial Flutter</th>
<th>JET/PJRT</th>
<th>Vent Tachy (+VA block)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Rate</td>
<td>160-200</td>
<td>190-280</td>
<td>300-500</td>
<td>180-230</td>
<td>slow-normal</td>
</tr>
<tr>
<td>A-A Interval</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
</tr>
<tr>
<td>A-V Relation</td>
<td>1:1</td>
<td>1:1</td>
<td>primarily 2:1</td>
<td>1:1</td>
<td><1:1</td>
</tr>
<tr>
<td>Ventricular Rate</td>
<td>160-200</td>
<td>190-280</td>
<td>150-250</td>
<td>180-230</td>
<td>160-260</td>
</tr>
<tr>
<td>V-V Interval</td>
<td>regular</td>
<td>regular</td>
<td>mainly regular</td>
<td>regular</td>
<td>regularly irregular</td>
</tr>
<tr>
<td>V-A Interval</td>
<td>long VA</td>
<td>short VA</td>
<td>--</td>
<td>long VA</td>
<td>dissociated</td>
</tr>
<tr>
<td>Incidence</td>
<td>rare</td>
<td>++</td>
<td>+</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>Relevance</td>
<td>depends on cause</td>
<td>major, treatable</td>
<td>major, treatable</td>
<td>major, treatable</td>
<td>major, treatable</td>
</tr>
</tbody>
</table>

E Jaeggi, Fetal Cardiology 2nd ed.
Fetal Tachycardias

A. Sinus tachycardia
 - Atrial
 - AV conduction
 - Ventricular
 - Echo and ECG:
 - A-V ratio: 1:1, long VA
 - V-V: regular, same as atrial rate

B. AV re-entrant tachycardia
 - Atrial
 - AV conduction
 - Ventricular
 - Echo and ECG:
 - A-A: regular, 190 – 300 bpm
 - A-V: 1:1, short VA: stops with AV block
 - V-V: regular, same as atrial rate

C. Atrial flutter
 - Atrial
 - AV conduction
 - Ventricular
 - Echo and ECG:
 - A-A: regular, 300 – 500 bpm
 - A-V ratio: mainly 2:1 (1:1 – 4:1)
 - V-V: regular, 150–250 bpm

D. Permanent junctional reciprocating tachycardia
 - Atrial
 - AV conduction
 - Ventricular
 - Echo and ECG:
 - A-V ratio: 1:1, long VA (like AET)
 - V-V: regular, 180–220 bpm
SVT - Mechanism

- Immature myocardium
 - Persistence of accessory pathways
 - Macroreentry circuit

- Associations
 - Ebstein’s anomaly, rhabdomyomas, or myocarditis
Supraventricular Tachycardia

- FHR 190-280 bpm
- 1:1 A-V conduction, Short VA accessory pathway (orthodromic-down slow AVN and up fast APW)
- Sudden onset/termination
- Fast, brief/intermittent/sustained
- ~60% of fetal tachycardias
Supraventricular Tachycardia

Supraventricular = Short VA
Long VA: PJRT & EAT (possible Sinus Tach)

- FHR 180-230 bpm
- 1:1 A-V, fast, regular
 - PJRT 1:1, EAT 1:1 primarily
- ~10% of fetal tachycardias
Heart rate 195 bpm
Atrial Flutter

- A rate 300-500 bpm; V rate 150-250 bpm
- A>V, fast, mainly regular
- Irregular/Variable conduction (mainly 2:1)
- “Quivering” atria
- GA: 3rd trimester, macroreentry circuit
- ~30% of fetal tachycardia
Atrial Flutter

Atrium

Ventricular
Comparison of SVT and AF
Ventricular Tachycardia

- HR 280-340 bpm
- V>A (with VA block), fast, regular
- Seen with rhabdomyomas, aneurysms/diverticuli, cardiomyopathy, long QT syndrome, immune mediated myocarditis, electrolyte imbalance
- Rx: sotalol, flecainide, propranolol, amiodarone, IV Mg (LQTS)
- ~1-2% of fetal tachycardias
Ventricular Tachycardia
Fetal Tachyarrhythmia - Treatment

• Multiple studies assessing different therapeutic options
 – Observation, antiarrhythmics, or delivery

• Comparison of Transplacental Therapy of Fetal Supraventricular Tachyarrhythmias with Digoxin, Flecainide, and Sotalol – Jaeggi et al 2011
 – 159 cases, 3 tertiary care centers

• Fetal Atrial Flutter & Supraventricular Tachycardia Therapy Trial (FAST Therapy Trial) – Jaeggi

Fetal Tachyarrhythmia - Treatment

- Assess fetal factors

Percent Freedom from Prenatal Conversion

Jaeggi et al. Circulation 2011
Fetal Tachyarrhythmia - Treatment

• Assess fetal factors

SVA Mechanism

Percent Freedom from Prenatal Conversion

Jaeggi et al. Circulation 2011
Fetal Tachyarrhythmia - Treatment

1st Line Drug Therapy

Freedom from prenatal conversion to sinus

Percent Freedom from Prenatal Conversion

Jaeggi et al. Circulation 2011
When to Treat?

• Transplacental therapy most common but direct fetal or umbilical cord therapy useful with hydrops
• Sustained tachycardia (>50% of the scan time)
• Typically treat if < 32 weeks
 – If > 35 weeks, consider early delivery
 – Concerns for late pre-term complications
• Signs of fetal compromise
• Treatment more effective without hydrops
Fetal Tachyarrhythmia – Treatment

• Maternal medical exam/cardiac history
• Maternal EKG, BMP, Mg, +/- TFTs
 – Correct K, Ca, and Mg
• Serum drug level
 – Evaluate for toxicity
 – Estimate fetal serum level
• Be cognizant of possible early delivery as a “treatment”
Digoxin

- Fetal:Maternal drug level
 - 0.6:1 (decreased to 0.2:1 with hydrops)

- Safety
 - Maternal: level >2 can be well tolerated
 - Safe in the fetus

- Efficacy
 - 32-71% conversion without hydrops
 - 10-41% with hydrops
 - Conversion rate SVT > A flutter
Flecainide

- Fetal:Maternal drug level
 - 1:1

- Safety
 - Fetal demise 18% (ventricular rapid response with a flutter)
 - Widen QRS and PR prolongation on maternal ECG
 - Avoid with maternal cardiac disease

- Efficacy
 - 90-100% without hydrops
 - 50-80% with hydrops
Sotalol

- Fetal:Maternal drug level
 - 1:1?

- Safety
 - 25% fetal deaths reported (but may be an overestimate)
 - Prolongs QT interval on maternal ECG

- Efficacy
 - 80-90% conversion

Oudijik, 2000
Amiodarone

- Fetal:Maternal drug level
 - 0.15:1 no hydrops, 0.028:1 with hydrops
- Safety
 - No reported fetal demise from drug
 - Hypothyroidism in mother
 - Prolongs QT interval on maternal ECG
 - Neonatal hypothyroidism
- Efficacy
 - 93% for SVT
 - Lower for atrial flutter
Summary

- Atrial bigeminy is typically benign and resolves.
- Fetal bradycardia requires early evaluation for associated structural heart disease.
- LQTS may present with sinus bradycardia and 2:1 AV block.
- Dexamethasone and hydroxychloroquine shown to be beneficial in SSA pregnancies.
- Medical therapy exists for immune mediated complete heart block.
Summary

- Fetal tachycardias are common and treatable
- Determine mechanism of tachycardia for treatment selection
- Structural heart disease may be the cause
- Ventricular tachycardia is rare and consider LQTS
The 8th
Phoenix Fetal Cardiology Symposium
Oct. 27 -31, 2017

REGISTRATION OPEN!

www.fetalcardio.com